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1 Setup

1.1 The lattice

Consider a discrete lattice with lattice spacing a = 1 and an even integer L > 0 lattice points.

In Fourier space, the only allowed k values are k = 2πd
L for d ∈ Z. Note that because L is even, k = 0

and k = π will both be included. We can also consider k1, k2 equivalent if k1 − k2 = 2πd for some integer d.

The dispersion relation goes as w = cos(k).

1.2 Defining S(∆k,∆w)

I will calculate S(∆k,∆w) at infinite temperature (β = 0). This is represented below:

S(∆k,∆w) =
∑
uv

δ(∆w − (Eu − Ev))‖ 〈u|Sz∆k |v〉 ‖2 (1)

Here, |u〉 , |v〉 represent states in the sum of Hilbert spaces from 0 to L particles. At infinite temperature,

all 2L states are equally likely.

The ‖ 〈u|Sz∆k |v〉 ‖2 term describes a transition from state |u〉 to state |v〉, with change in total momen-

tum ∆k. This term should conserve total particle number.

1.3 Allowed values of ∆k and ∆w

We define Szk below:

Sz∆k =
∑
k

a†kak+∆k (2)

This operator can be described by annihilating a particle at momentum k + ∆k and creating a particle

at momentum k. State transitions can only change particle momentum by ∆k.

So we only need to consider transitions of a single particle moving in (k,w)-space, from (m, cos( 2mπ
L ))

to (n, cos( 2nπ
L )). This restricts ∆k:

∆k =
2πd

L
, d ∈ Z (3)

There are some interesting symmetries. Since k1 is equivalent to k2 = k1 + 2πd for integer d, ∆k and ∆k′

can be thought of as equivalent when k−k′ = 2πd for integer d. This corresponds to one-particle transitions
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from the same initial k1 to k2 in different Brillouin zones.

Additionally, there is a reflection symmetry around the w-axis. We could consider transitions to the ”right”

or to the ”left” without loss of generality. So, ∆k and −∆k can be thought of as equivalent.

Thus, we only need to compute ∆k from 0 to π.

The δ(∆w − (Em − En)) term restricts S(∆k,∆w) nonzero only at ∆w corresponding to transitions:

∆w = cos(
2mπ

L
)− cos(2nπ

L
), n,m ∈ Z (4)

2 Doing the counting

2.1 Each one-particle transition can be done 2L−2 equally likely ways

Suppose you transition a particle from k1 to k2. Before you make the transition, you need the input k1 filled

and the output k2 empty. You have 2L−2 total choices when specifying the other k-values.

Each transition uniquely specifies a state; it takes the starting state, empties the input k1 and fills the

output k2. So, there are 2L−2 · 1 = 2L−2 ways to jump from k1 to k2.

Each jump is equally likely because all states are equally likely at infinite temperature.

2.2 Choosing ∆k 6= 0,∆w specifies 0, 1, or 2 distinct one-particle transitions

If ∆k or ∆w are not allowed, there are 0 one-particle transitions.

Suppose the ∆k and ∆w are allowed by a transition from (k1, w1) to (k2, w2) where k1 6= k2. By sym-

metry of cos(k), there exist points (π−k1,−w1) and (π−k2,−w2). A transition from π−k2 to π−k1 would

have the same ∆k = π− k1− (π− k2) = k2− k1 and ∆w = −w1− (−w2) = w2−w1. This second transition

is distinct except when both ∆w = 0 and k1 + k2 = π mod 2π.

In other words, any (∆k, ∆w) has 2 distinct one-particle transitions, except for nonzero ∆w where the

transition is symmetric about the k-axis. (Note: As we will see, for every ∆k, the number of exception ∆w

goes as 1/L.)

I have not formally proved uniqueness, i.e. there are at most 2 distinct one-particle transitions. Perhaps it

can be done by thinking about the average of sin(x) over a sliding window somewhere in the domain 0 to π
2 .

2.3 Computing allowed values of ∆w(∆k)

We can simplify equation 4 using the trigonometric sum-difference formulas:

∆w = cos(
2mπ

L
)− cos(2nπ

L
) = 2sin(

2π

L

(m+ n)

2
)sin(

2π

L

(m− n)

2
), n,m ∈ Z (5)

Since the associated ∆k = 2π(m−n)
L , we can find the allowed ∆w(∆k):

∆w(∆k) = 2sin(
2πm

L
− ∆k

2
)sin(

∆k

2
) = sin(

2πm

L
)sin(∆k)− cos(2πm

L
)(1− cos(∆k)),m ∈ Z (6)

2



In general, since eicx = cos(cx) + isin(cx), Acos(cx) +Bsin(cx) represents a sinusoid:

Acos(cx) +Bsin(cx) = Re((A− iB)eicx) =
√
A2 +B2cos(cx− arctan

B

A
) (7)

We can verify that the allowed ∆w(∆k) are points from a sinusoid with a phase shift:

∆w(∆k) =
√

(cos(∆k)− 1)2 + sin2(∆k)cos(
2πm

L
− arctan

sin(∆k)

cos(∆k)− 1
),m ∈ Z (8)

∆w(∆k) =
√

2− 2cos(∆k)cos(
2πm

L
− π + ∆k

2
) = 2sin(

∆k

2
)sin(

2πm

L
− ∆k

2
),m ∈ Z (9)

2.4 Degeneracy of ∆w(∆k)

This function takes up to L distinct values: Each starting point (position m) on the lattice could produce a

different ∆w.

When ∆k = 0, only ∆w = 0 is allowed, so it has degeneracy L.

For nonzero ∆k, there are at most two starting positions m 6= 0 that change from km to −km. Those

two points will have degeneracy 1, and the rest will have degeneracy 2.

In particular, there exists a starting position m with wm = 0 if and only if L is divisible by 4. In these cases,

only ∆k corresponding to an odd number of steps s = 2d+ 1, d ∈ Z will have two points with degeneracy 1

(d steps above and below the zero position).

The opposite is true for L even but not divisible by 4: Only ∆k corresponding to an even (nonzero) number

of steps s = 2d, d ∈ Z will have two points with degeneracy 1 (d steps above and below w = 0).

All together:

count(∆w = 0,∆k = 0, L) = L (10)

And considering d, e ∈ Z:

count(∆w = ±2sin(
2πd

L
),∆k =

2(2d+ 1)π

L
,L = 4e) = 1 (11)

count(∆w = ±2sin(
2πd− π

L
),∆k =

4dπ

L
6= 0, L = 4e+ 2) = 1 (12)

And in all other allowed cases, count(∆w,∆k, L) = 2.

2.5 Calculating S(∆k,∆w)

Using the previous section:

S(∆k,∆w) = δeikL−1δ∆w−∆w(∆k)count(∆w,∆k, L)
2L−2

2L
=

1

4
δeikL−1δ∆w−∆w(∆k)count(∆w,∆k, L) (13)

In this form, it is hard to visualize, but let me sketch a few details.

• ∆k is fixed on a grid. and S is symmetric about ∆k and periodic with ∆k = 2π.

• ∆w is only allowed at certain values for each ∆k, described by equation 6.

• The value of S at each allowed (k,w) is uniform except for a few cases, dependent on L and ∆k.
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3 Features of ∆w(∆k)

3.1 Computing the minimum allowed |∆w(∆k)|
If ∆k corresponds to an even number of steps in k, the jump can be symmetric around k = 0 (so ∆w = 0).

If ∆k corresponds to an odd number of steps s = 2d + 1 in k, the jump must be nonzero. It is best to

have the endpoints nearest to k = 0 (where the slope of w(k) is the smallest). For 0 ≤ s ≤ L/2 (the relevant

range) this implies centering around k = 0. So, the minimum jump will be cos(2dπ/L)− cos(2(d+ 1)π/L).

All together:

min|∆w(∆k)| = 0,∆k =
4dπ

L
, d ∈ Z (14)

min|∆w(∆k)| = cos(
2dπ

L
)− cos(2(d+ 1)π

L
),∆k =

2(2d+ 1)π

L
, d ∈ Z (15)

The above formula could be rewritten in trigonometric functions of 2π
L and 2dπ

L , if the reader is interested.

3.2 Computing the maximum allowed ∆w(∆k)

When ∆k = 0, ∆w = 0. The rest of the subsection explores ∆k 6= 0.

Suppose L is divisible by 4. Then there will be a point at w = 0. The maximum ∆w corresponds to

the largest jump around w = 0 (where the slope of w(k) is largest in magnitude). So, for an odd number of

lattice steps s = 2d+ 1, d ∈ Z, the maximum is sin( 2πd
L )− sin(− 2πd

L ) = 2sin( 2πd
L )). For an even number of

lattice steps s = 2d, d ∈ Z it’s nearly that: sin( 2π(d−1)
L )− sin(− 2πd

L ) = sin( 2πd
L ) + sin( 2π(d−1)

L ).

When L is even but not divisible by 4, there is no point at w = 0. The best case is when ∆k corresponds to an

even number of lattice steps s = 2d, d ∈ Z; then, the maximum is sin( 2πd−π
L )− sin(−2πd+π

L ) = 2sin( 2πd−π
L ).

When ∆k is an odd number of lattice steps s = 2d+ 1, d ∈ Z, the maximum is sin( 2πd−π
L )− sin(− 2πd−π

L ) =

sin( 2πd−π
L ) + sin( 2πd+π

L ) = 2sin( 2πd
L )cos( πL ).

All together, assuming d, e ∈ Z:

max∆w(∆k) = 2sin(
2πd

L
),∆k =

2π(2d+ 1)

L
,L = 4e (16)

max∆w(∆k) = sin(
2πd

L
) + sin(

2π(d− 1)

L
),∆k =

4πd

L
6= 0, L = 4e (17)

max∆w(∆k) = 2sin(
2πd

L
)cos(

π

L
),∆k =

2π(2d+ 1)

L
,L = 4e+ 2 (18)

max∆w(∆k) = 2sin(
2πd− π

L
),∆k =

4πd

L
6= 0, L = 4e+ 2 (19)

3.3 Computing the average allowed |∆w(∆k)| as L→∞
In the thermodynamic limit, the average allowed |∆w(∆k)| can be found by averaging its expression:

|∆w(∆k)| = |2sin(
∆k

2
)sin(

2πm

L
− ∆k

2
)| = 4

π
sin(

∆k

2
) (20)
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Figure 1: ∆w(∆k) at L = 8. The plot is symmetric about ∆k = π and ∆w = 0.

4 Plots

4.1 Plotting ∆w(∆k) at various L

We know a few details about this function so far:

• The minimum of |∆w| stays around zero.

• The maximum of ∆w goes roughly as 2sin(∆k
2 ).

• The average |∆w| goes roughly as 4
π sin(∆k

2 ).

Figures 1, 2, 3, 4 visualize ∆w(∆k) at various L. The generating code is in a Jupyter notebook and PDF

attached to this project.

Ignoring nearly uniform degeneracies, ∆w(∆k) can be used to describe the density of states of S(∆k,∆w),

especially as L→∞. I use alpha compositing on these plots to better show this density of states.

4.2 Plotting S(∆k,∆w) at various L and ∆k

At finite L, this function is a summation of Kronecker delta functions at allowed (∆k,∆w) values. So, for

these plots, I convert allowed values of (∆k,∆w) to Gaussians with σ∆w = 0.1.

Figures 5a, 5b visualize S at various ∆k. The density of states is similar to the output y = sin(x) sampled

at fixed x, so S is similar to the curve d
dx arcsinx = 1√

1−x2
.

Figures 6a, 6b, 6c visualize S at various L. The oscillations disappear at larger L, but that threshold

increases with increasing ∆k.
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Figure 2: ∆w(∆k) at L = 20. Notice how the maximum goes approximately with 2sin(∆k
2 ).

Figure 3: ∆w(∆k) at L = 60. The darker areas correspond to a higher density of states (thus a higher

S(∆k,∆w)). Although ∆w can vary across the plot, many states are concentrated around the maximum

|∆w(∆k)|.
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Figure 4: Quarter-plot of ∆w(∆k) at L = 60. This function is symmetric about both the ∆k-axis and

∆w-axis. Notice that every other allowed ∆k includes ∆w = 0.

(a) S(∆k,∆w) at L = 20. (b) S(∆k,∆w) at L = 40.

Figure 5: Plot of S(∆k,∆w) at various ∆k. At higher ∆k, the function requires higher L to smooth out.

(a) S(∆k,∆w) at ∆k = 0.25π. (b) S(∆k,∆w) at ∆k = 0.5π. (c) S(∆k,∆w) at ∆k = π.

Figure 6: Plot of S(∆k,∆w) at various L. The function stabilizes as L > 50.
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5 Examples

5.1 Worked example: L=2

If there are only 2 elements in the lattice, then only (k = 0, w = 1) and (k = π,w = −1) are allowed. So,

there are 4 distinct one-particle transitions:

1. k = 0→ k = 0 (∆k = 0,∆w = 0)

2. k = 0→ k = π (∆k = π,∆w = −2)

3. k = π → k = 0 (∆k = π,∆w = 2)

4. k = π → k = π (∆k = 0,∆w = 0)

This matches each analytical result:

• There are 0-2 one-particle transitions per (∆k,∆w)

• ∆w(0) = 0

• ∆w(π) = sin( 2πm
L ) = ±1

• The reader can verify that minimum and maximum allowed |∆w| match at both ∆k = 0 and ∆k = π.

5.2 Worked example: L=4

With four points on the lattice, there are four points in k-space: (k,w) ∈ {(0, 1), (π2 , 0), (π,−1), ( 3π
2 , 0)}.

Consider the distinct transitions with positive ∆k:

• ∆k = 0. Here, ∆w = 0 for all 4 possibilities.

• ∆k = π
2 . Here, in two cases (k = π, 3π

2 ), ∆w = 1, and in the other two, ∆w = −1.

• ∆k = π. Here, in two cases (k = π
2 ,

3π
2 ), ∆w = 0, and the other two cases produce ∆w = ±2.

• ∆k = 3π
2 = −π

2 + 2π. This has the same behavior as ∆k = π
2 .

This again matches each analytical result, including:

• There are 0-2 one-particle transitions per (∆k,∆w)

• ∆w(π2 ) = cos( 2πm
L ) + sin( 2πm

L ) = ±1

• The reader can verify the degeneracies are in the expected places.

5.3 Worked example: L=8

With eight points on the lattice, there are the same four points in k-space as in L = 4, and four new points:

{(π4 ,
√

2
2 ), ( 3π

4 ,−
√

2
2 ), ( 5π

4 ,−
√

2
2 ), ( 7π

4 ,
√

2
2 )}. Considering transitions where 0 ≤ ∆k ≤ π:

• ∆k = 0. This forces ∆w = 0 for all L starting positions.

• ∆k = π
4 . This has ∆w = ±

√
2

2 ,±(1−
√

2
2 ).

• ∆k = π
2 . This has ∆w = ±1, 0, and one value each (k = π

4 ,
5π
4 ) with ∆w = ±

√
2.

• ∆k = 3π
4 . This has ∆w = ±

√
2

2 ,±(1 +
√

2
2 ).

• ∆k = π. This has ∆w = ±2, 0, and one value each (k = π
4 ,

5π
4 ) with ∆w = ±

√
2.

The reader can compare these values to Figure 1.

8



(a) y = sin(x), sampled 100 times in 4π. (b) y = sin(x), sampled 10000 times in 4π.

Figure 7: Plot of y = sin(x), sampled evenly in x. Most points have |y| ≈ 1.

6 Asymptotic behavior of S(∆k,∆w) as L→∞

6.1 Using ∆w(∆k) as a density of states

In equation 6, each transition of a particular ∆k gives a ∆w depending on the starting position m. In the

thermodynamic limit, L → ∞, which increases the number of distinct starting positions m. To get a sense

of the value at S(∆k,∆w0), it’s crucial to know how many starting positions m give ∆w in a nearby range.

Consider an example y = sin(x) for some x ∈ R. Intuitively, sampling y at mx at each m ∈ Z will

produce more points in the ”peaks” and ”valleys” of sin(x), since the slope of y is so large near y = 0 (in

fact, its magnitude is close to cos(0) = 1). Figure 7 illustrates this.

More formally, the value of S(∆k,∆w0) depends on the proportion of m that produce ∆w ∈ [∆w0,∆w0 +ε).

In the simple example, x = arcsin y describes the inputs required to produce some y-value. To find how

many x-values are captured by a change in y-value, we use the derivative:

ρ(y) =
dx

dy
=

d

dy
arcsin y =

1√
1− y2

(21)

Figure 8 compares a histogram of samples of sin(x) with equation 21.

6.2 S(∆k,∆w) as L→∞
For each ∆k, the value of S(∆k,∆w) is proportional to dm

d(∆w(∆k)) . (Remember that equation 6 takes a value

at every m ∈ Z.) This can be directly computed:

dm

d∆w(∆k)
∝ d

d∆w

(∆k

2
+ arcsin

∆w

2 sin (∆k/2)

)
=

1√
4 sin2 (∆k/2)− (∆w)2

(22)

At small ∆k, this equation simplifies to
(
(∆k)2 − (∆w)2

)−1/2
. The reader can look to plots in Figures 5, 6

which exhibit this behavior.
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Figure 8: Distribution of y-values of y = sin(x), sampled evenly in x. As the number of samples goes to ∞,

the distribution ρ(y) approaches d
dy arcsin y. At each ∆k, ∆w(∆k) and S(∆k,∆w) are similarly related. In

the thermodynamic limit, S(∆k,∆w) approaches a value proportional to d
d(∆w) arcsin ∆w = 1√

1−(∆w)2
.
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