Counting $S(\Delta k, \Delta w)$ at $\beta=0$ in the XX Model

Kunal Marwaha

October 2019

This work is licensed under a Creative Commons "Attribution 4.0 International" license.

1 Setup

1.1 The lattice

Consider a discrete lattice with lattice spacing $a=1$ and an even integer $L>0$ lattice points.

In Fourier space, the only allowed k values are $k=\frac{2 \pi d}{L}$ for $d \in \mathbb{Z}$. Note that because L is even, $k=0$ and $k=\pi$ will both be included. We can also consider k_{1}, k_{2} equivalent if $k_{1}-k_{2}=2 \pi d$ for some integer d.

The dispersion relation goes as $w=\cos (k)$.

1.2 Defining $S(\Delta k, \Delta w)$

I will calculate $S(\Delta k, \Delta w)$ at infinite temperature $(\beta=0)$. This is represented below:

$$
\begin{equation*}
S(\Delta k, \Delta w)=\sum_{u v} \delta\left(\Delta w-\left(E_{u}-E_{v}\right)\right)\left\|\langle u| S_{\Delta k}^{z}|v\rangle\right\|^{2} \tag{1}
\end{equation*}
$$

Here, $|u\rangle,|v\rangle$ represent states in the sum of Hilbert spaces from 0 to L particles. At infinite temperature, all 2^{L} states are equally likely.

The $\left\|\langle u| S_{\Delta k}^{z}|v\rangle\right\|^{2}$ term describes a transition from state $|u\rangle$ to state $|v\rangle$, with change in total momentum Δk. This term should conserve total particle number.

1.3 Allowed values of Δk and Δw

We define S_{k}^{z} below:

$$
\begin{equation*}
S_{\Delta k}^{z}=\sum_{k} a_{k}^{\dagger} a_{k+\Delta k} \tag{2}
\end{equation*}
$$

This operator can be described by annihilating a particle at momentum $k+\Delta k$ and creating a particle at momentum k. State transitions can only change particle momentum by Δk.

So we only need to consider transitions of a single particle moving in (k, w)-space, from $\left(m, \cos \left(\frac{2 m \pi}{L}\right)\right)$ to $\left(n, \cos \left(\frac{2 n \pi}{L}\right)\right)$. This restricts Δk :

$$
\begin{equation*}
\Delta k=\frac{2 \pi d}{L}, d \in \mathbb{Z} \tag{3}
\end{equation*}
$$

There are some interesting symmetries. Since k_{1} is equivalent to $k_{2}=k_{1}+2 \pi d$ for integer $d, \Delta k$ and Δk^{\prime} can be thought of as equivalent when $k-k^{\prime}=2 \pi d$ for integer d. This corresponds to one-particle transitions
from the same initial k_{1} to k_{2} in different Brillouin zones.

Additionally, there is a reflection symmetry around the w-axis. We could consider transitions to the "right" or to the "left" without loss of generality. So, Δk and $-\Delta k$ can be thought of as equivalent.

Thus, we only need to compute Δk from 0 to π.

The $\delta\left(\Delta w-\left(E_{m}-E_{n}\right)\right)$ term restricts $S(\Delta k, \Delta w)$ nonzero only at Δw corresponding to transitions:

$$
\begin{equation*}
\Delta w=\cos \left(\frac{2 m \pi}{L}\right)-\cos \left(\frac{2 n \pi}{L}\right), n, m \in \mathbb{Z} \tag{4}
\end{equation*}
$$

2 Doing the counting

2.1 Each one-particle transition can be done 2^{L-2} equally likely ways

Suppose you transition a particle from k_{1} to k_{2}. Before you make the transition, you need the input k_{1} filled and the output k_{2} empty. You have 2^{L-2} total choices when specifying the other k-values.

Each transition uniquely specifies a state; it takes the starting state, empties the input k_{1} and fills the output k_{2}. So, there are $2^{L-2} \cdot 1=2^{L-2}$ ways to jump from k_{1} to k_{2}.

Each jump is equally likely because all states are equally likely at infinite temperature.

2.2 Choosing $\Delta k \neq 0, \Delta w$ specifies $\mathbf{0}, \mathbf{1}$, or 2 distinct one-particle transitions

If Δk or Δw are not allowed, there are 0 one-particle transitions.

Suppose the Δk and Δw are allowed by a transition from $\left(k_{1}, w_{1}\right)$ to $\left(k_{2}, w_{2}\right)$ where $k_{1} \neq k_{2}$. By symmetry of $\cos (k)$, there exist points $\left(\pi-k_{1},-w_{1}\right)$ and $\left(\pi-k_{2},-w_{2}\right)$. A transition from $\pi-k_{2}$ to $\pi-k_{1}$ would have the same $\Delta k=\pi-k_{1}-\left(\pi-k_{2}\right)=k_{2}-k_{1}$ and $\Delta w=-w_{1}-\left(-w_{2}\right)=w_{2}-w_{1}$. This second transition is distinct except when both $\Delta w=0$ and $k_{1}+k_{2}=\pi \bmod 2 \pi$.

In other words, any $(\Delta k, \Delta w)$ has 2 distinct one-particle transitions, except for nonzero Δw where the transition is symmetric about the k-axis. (Note: As we will see, for every Δk, the number of exception Δw goes as $1 / L$.)

I have not formally proved uniqueness, i.e. there are at most 2 distinct one-particle transitions. Perhaps it can be done by thinking about the average of $\sin (x)$ over a sliding window somewhere in the domain 0 to $\frac{\pi}{2}$.

2.3 Computing allowed values of $\Delta w(\Delta k)$

We can simplify equation 4 using the trigonometric sum-difference formulas:

$$
\begin{equation*}
\Delta w=\cos \left(\frac{2 m \pi}{L}\right)-\cos \left(\frac{2 n \pi}{L}\right)=2 \sin \left(\frac{2 \pi}{L} \frac{(m+n)}{2}\right) \sin \left(\frac{2 \pi}{L} \frac{(m-n)}{2}\right), n, m \in \mathbb{Z} \tag{5}
\end{equation*}
$$

Since the associated $\Delta k=\frac{2 \pi(m-n)}{L}$, we can find the allowed $\Delta w(\Delta k)$:

$$
\begin{equation*}
\Delta w(\Delta k)=2 \sin \left(\frac{2 \pi m}{L}-\frac{\Delta k}{2}\right) \sin \left(\frac{\Delta k}{2}\right)=\sin \left(\frac{2 \pi m}{L}\right) \sin (\Delta k)-\cos \left(\frac{2 \pi m}{L}\right)(1-\cos (\Delta k)), m \in \mathbb{Z} \tag{6}
\end{equation*}
$$

In general, since $e^{i c x}=\cos (c x)+i \sin (c x), A \cos (c x)+B \sin (c x)$ represents a sinusoid:

$$
\begin{equation*}
A \cos (c x)+B \sin (c x)=\operatorname{Re}\left((A-i B) e^{i c x}\right)=\sqrt{A^{2}+B^{2}} \cos \left(c x-\arctan \frac{B}{A}\right) \tag{7}
\end{equation*}
$$

We can verify that the allowed $\Delta w(\Delta k)$ are points from a sinusoid with a phase shift:

$$
\begin{gather*}
\Delta w(\Delta k)=\sqrt{(\cos (\Delta k)-1)^{2}+\sin ^{2}(\Delta k)} \cos \left(\frac{2 \pi m}{L}-\arctan \frac{\sin (\Delta k)}{\cos (\Delta k)-1}\right), m \in \mathbb{Z} \tag{8}\\
\Delta w(\Delta k)=\sqrt{2-2 \cos (\Delta k)} \cos \left(\frac{2 \pi m}{L}-\frac{\pi+\Delta k}{2}\right)=2 \sin \left(\frac{\Delta k}{2}\right) \sin \left(\frac{2 \pi m}{L}-\frac{\Delta k}{2}\right), m \in \mathbb{Z} \tag{9}
\end{gather*}
$$

2.4 Degeneracy of $\Delta w(\Delta k)$

This function takes up to L distinct values: Each starting point (position m) on the lattice could produce a different Δw.

When $\Delta k=0$, only $\Delta w=0$ is allowed, so it has degeneracy L.

For nonzero Δk, there are at most two starting positions $m \neq 0$ that change from k_{m} to $-k_{m}$. Those two points will have degeneracy 1 , and the rest will have degeneracy 2 .

In particular, there exists a starting position m with $w_{m}=0$ if and only if L is divisible by 4 . In these cases, only Δk corresponding to an odd number of steps $s=2 d+1, d \in \mathbb{Z}$ will have two points with degeneracy 1 (d steps above and below the zero position).

The opposite is true for L even but not divisible by 4: Only Δk corresponding to an even (nonzero) number of steps $s=2 d, d \in \mathbb{Z}$ will have two points with degeneracy $1(d$ steps above and below $w=0)$.

All together:

$$
\begin{equation*}
\operatorname{count}(\Delta w=0, \Delta k=0, L)=L \tag{10}
\end{equation*}
$$

And considering $d, e \in \mathbb{Z}$:

$$
\begin{gather*}
\operatorname{count}\left(\Delta w= \pm 2 \sin \left(\frac{2 \pi d}{L}\right), \Delta k=\frac{2(2 d+1) \pi}{L}, L=4 e\right)=1 \tag{11}\\
\operatorname{count}\left(\Delta w= \pm 2 \sin \left(\frac{2 \pi d-\pi}{L}\right), \Delta k=\frac{4 d \pi}{L} \neq 0, L=4 e+2\right)=1 \tag{12}
\end{gather*}
$$

And in all other allowed cases, $\operatorname{count}(\Delta w, \Delta k, L)=2$.

2.5 Calculating $S(\Delta k, \Delta w)$

Using the previous section:

$$
\begin{equation*}
S(\Delta k, \Delta w)=\delta_{e^{i k L-1}} \delta_{\Delta w-\Delta w(\Delta k)} \operatorname{count}(\Delta w, \Delta k, L) \frac{2^{L-2}}{2^{L}}=\frac{1}{4} \delta_{e^{i k L-1}} \delta_{\Delta w-\Delta w(\Delta k)} \operatorname{count}(\Delta w, \Delta k, L) \tag{13}
\end{equation*}
$$

In this form, it is hard to visualize, but let me sketch a few details.

- Δk is fixed on a grid. and S is symmetric about Δk and periodic with $\Delta k=2 \pi$.
- Δw is only allowed at certain values for each Δk, described by equation 6
- The value of S at each allowed (k, w) is uniform except for a few cases, dependent on L and Δk.

3 Features of $\Delta w(\Delta k)$

3.1 Computing the minimum allowed $|\Delta w(\Delta k)|$

If Δk corresponds to an even number of steps in k, the jump can be symmetric around $k=0$ (so $\Delta w=0$).

If Δk corresponds to an odd number of steps $s=2 d+1$ in k, the jump must be nonzero. It is best to have the endpoints nearest to $k=0$ (where the slope of $w(k)$ is the smallest). For $0 \leq s \leq L / 2$ (the relevant range) this implies centering around $k=0$. So, the minimum jump will be $\cos (2 d \pi / L)-\cos (2(d+1) \pi / L)$.

All together:

$$
\begin{align*}
& \min |\Delta w(\Delta k)|=0, \Delta k=\frac{4 d \pi}{L}, d \in \mathbb{Z} \tag{14}\\
& \min |\Delta w(\Delta k)|= \cos \left(\frac{2 d \pi}{L}\right)-\cos \left(\frac{2(d+1) \pi}{L}\right), \Delta k=\frac{2(2 d+1) \pi}{L}, d \in \mathbb{Z} \tag{15}
\end{align*}
$$

The above formula could be rewritten in trigonometric functions of $\frac{2 \pi}{L}$ and $\frac{2 d \pi}{L}$, if the reader is interested.

3.2 Computing the maximum allowed $\Delta w(\Delta k)$

When $\Delta k=0, \Delta w=0$. The rest of the subsection explores $\Delta k \neq 0$.

Suppose L is divisible by 4. Then there will be a point at $w=0$. The maximum Δw corresponds to the largest jump around $w=0$ (where the slope of $w(k)$ is largest in magnitude). So, for an odd number of lattice steps $s=2 d+1, d \in \mathbb{Z}$, the maximum is $\left.\sin \left(\frac{2 \pi d}{L}\right)-\sin \left(-\frac{2 \pi d}{L}\right)=2 \sin \left(\frac{2 \pi d}{L}\right)\right)$. For an even number of lattice steps $s=2 d, d \in \mathbb{Z}$ it's nearly that: $\sin \left(\frac{2 \pi(d-1)}{L}\right)-\sin \left(-\frac{2 \pi d}{L}\right)=\sin \left(\frac{2 \pi d}{L}\right)+\sin \left(\frac{2 \pi(d-1)}{L}\right)$.

When L is even but not divisible by 4 , there is no point at $w=0$. The best case is when Δk corresponds to an even number of lattice steps $s=2 d, d \in \mathbb{Z}$; then, the maximum is $\sin \left(\frac{2 \pi d-\pi}{L}\right)-\sin \left(\frac{-2 \pi d+\pi}{L}\right)=2 \sin \left(\frac{2 \pi d-\pi}{L}\right)$. When Δk is an odd number of lattice steps $s=2 d+1, d \in \mathbb{Z}$, the maximum is $\sin \left(\frac{2 \pi d-\pi}{L}\right)-\sin \left(-\frac{2 \pi d-\pi}{L}\right)=$ $\sin \left(\frac{2 \pi d-\pi}{L}\right)+\sin \left(\frac{2 \pi d+\pi}{L}\right)=2 \sin \left(\frac{2 \pi d}{L}\right) \cos \left(\frac{\pi}{L}\right)$.

All together, assuming $d, e \in \mathbb{Z}$:

$$
\begin{gather*}
\max \Delta w(\Delta k)=2 \sin \left(\frac{2 \pi d}{L}\right), \Delta k=\frac{2 \pi(2 d+1)}{L}, L=4 e \tag{16}\\
\max \Delta w(\Delta k)=\sin \left(\frac{2 \pi d}{L}\right)+\sin \left(\frac{2 \pi(d-1)}{L}\right), \Delta k=\frac{4 \pi d}{L} \neq 0, L=4 e \tag{17}\\
\max \Delta w(\Delta k)=2 \sin \left(\frac{2 \pi d}{L}\right) \cos \left(\frac{\pi}{L}\right), \Delta k=\frac{2 \pi(2 d+1)}{L}, L=4 e+2 \tag{18}\\
\max \Delta w(\Delta k)=2 \sin \left(\frac{2 \pi d-\pi}{L}\right), \Delta k=\frac{4 \pi d}{L} \neq 0, L=4 e+2 \tag{19}
\end{gather*}
$$

3.3 Computing the average allowed $|\Delta w(\Delta k)|$ as $L \rightarrow \infty$

In the thermodynamic limit, the average allowed $|\Delta w(\Delta k)|$ can be found by averaging its expression:

$$
\begin{equation*}
|\Delta w(\Delta k)|=\left|2 \sin \left(\frac{\Delta k}{2}\right) \sin \left(\frac{2 \pi m}{L}-\frac{\Delta k}{2}\right)\right|=\frac{4}{\pi} \sin \left(\frac{\Delta k}{2}\right) \tag{20}
\end{equation*}
$$

Figure 1: $\Delta w(\Delta k)$ at $L=8$. The plot is symmetric about $\Delta k=\pi$ and $\Delta w=0$.

4 Plots

4.1 Plotting $\Delta w(\Delta k)$ at various L

We know a few details about this function so far:

- The minimum of $|\Delta w|$ stays around zero.
- The maximum of Δw goes roughly as $2 \sin \left(\frac{\Delta k}{2}\right)$.
- The average $|\Delta w|$ goes roughly as $\frac{4}{\pi} \sin \left(\frac{\Delta k}{2}\right)$.

Figures 1. 2, 3. 4 visualize $\Delta w(\Delta k)$ at various L. The generating code is in a Jupyter notebook and PDF attached to this project.

Ignoring nearly uniform degeneracies, $\Delta w(\Delta k)$ can be used to describe the density of states of $S(\Delta k, \Delta w)$, especially as $L \rightarrow \infty$. I use alpha compositing on these plots to better show this density of states.

4.2 Plotting $S(\Delta k, \Delta w)$ at various L and Δk

At finite L, this function is a summation of Kronecker delta functions at allowed ($\Delta k, \Delta w$) values. So, for these plots, I convert allowed values of $(\Delta k, \Delta w)$ to Gaussians with $\sigma_{\Delta w}=0.1$.

Figures 5a, 5b visualize S at various Δk. The density of states is similar to the output $y=\sin (x)$ sampled at fixed x, so S is similar to the curve $\frac{d}{d x} \arcsin x=\frac{1}{\sqrt{1-x^{2}}}$.

Figures 6a, 6b 6c visualize S at various L. The oscillations disappear at larger L, but that threshold increases with increasing Δk.

Figure 2: $\Delta w(\Delta k)$ at $L=20$. Notice how the maximum goes approximately with $2 \sin \left(\frac{\Delta k}{2}\right)$.

Figure 3: $\Delta w(\Delta k)$ at $L=60$. The darker areas correspond to a higher density of states (thus a higher $S(\Delta k, \Delta w)$). Although Δw can vary across the plot, many states are concentrated around the maximum $|\Delta w(\Delta k)|$.

Figure 4: Quarter-plot of $\Delta w(\Delta k)$ at $L=60$. This function is symmetric about both the Δk-axis and Δw-axis. Notice that every other allowed Δk includes $\Delta w=0$.

Figure 5: Plot of $S(\Delta k, \Delta w)$ at various Δk. At higher Δk, the function requires higher L to smooth out.

Figure 6: Plot of $S(\Delta k, \Delta w)$ at various L. The function stabilizes as $L>50$.

5 Examples

5.1 Worked example: $\mathrm{L}=2$

If there are only 2 elements in the lattice, then only $(k=0, w=1)$ and $(k=\pi, w=-1)$ are allowed. So, there are 4 distinct one-particle transitions:

1. $k=0 \rightarrow k=0(\Delta k=0, \Delta w=0)$
2. $k=0 \rightarrow k=\pi(\Delta k=\pi, \Delta w=-2)$
3. $k=\pi \rightarrow k=0(\Delta k=\pi, \Delta w=2)$
4. $k=\pi \rightarrow k=\pi(\Delta k=0, \Delta w=0)$

This matches each analytical result:

- There are 0-2 one-particle transitions per $(\Delta k, \Delta w)$
- $\Delta w(0)=0$
- $\Delta w(\pi)=\sin \left(\frac{2 \pi m}{L}\right)= \pm 1$
- The reader can verify that minimum and maximum allowed $|\Delta w|$ match at both $\Delta k=0$ and $\Delta k=\pi$.

5.2 Worked example: $\mathrm{L}=4$

With four points on the lattice, there are four points in k-space: $(k, w) \in\left\{(0,1),\left(\frac{\pi}{2}, 0\right),(\pi,-1),\left(\frac{3 \pi}{2}, 0\right)\right\}$. Consider the distinct transitions with positive Δk :

- $\Delta k=0$. Here, $\Delta w=0$ for all 4 possibilities.
- $\Delta k=\frac{\pi}{2}$. Here, in two cases $\left(k=\pi, \frac{3 \pi}{2}\right), \Delta w=1$, and in the other two, $\Delta w=-1$.
- $\Delta k=\pi$. Here, in two cases $\left(k=\frac{\pi}{2}, \frac{3 \pi}{2}\right), \Delta w=0$, and the other two cases produce $\Delta w= \pm 2$.
- $\Delta k=\frac{3 \pi}{2}=\frac{-\pi}{2}+2 \pi$. This has the same behavior as $\Delta k=\frac{\pi}{2}$.

This again matches each analytical result, including:

- There are 0-2 one-particle transitions per $(\Delta k, \Delta w)$
- $\Delta w\left(\frac{\pi}{2}\right)=\cos \left(\frac{2 \pi m}{L}\right)+\sin \left(\frac{2 \pi m}{L}\right)= \pm 1$
- The reader can verify the degeneracies are in the expected places.

5.3 Worked example: $\mathrm{L}=8$

With eight points on the lattice, there are the same four points in k-space as in $L=4$, and four new points: $\left\{\left(\frac{\pi}{4}, \frac{\sqrt{2}}{2}\right),\left(\frac{3 \pi}{4},-\frac{\sqrt{2}}{2}\right),\left(\frac{5 \pi}{4},-\frac{\sqrt{2}}{2}\right),\left(\frac{7 \pi}{4}, \frac{\sqrt{2}}{2}\right)\right\}$. Considering transitions where $0 \leq \Delta k \leq \pi$:

- $\Delta k=0$. This forces $\Delta w=0$ for all L starting positions.
- $\Delta k=\frac{\pi}{4}$. This has $\Delta w= \pm \frac{\sqrt{2}}{2}, \pm\left(1-\frac{\sqrt{2}}{2}\right)$.
- $\Delta k=\frac{\pi}{2}$. This has $\Delta w= \pm 1,0$, and one value each $\left(k=\frac{\pi}{4}, \frac{5 \pi}{4}\right)$ with $\Delta w= \pm \sqrt{2}$.
- $\Delta k=\frac{3 \pi}{4}$. This has $\Delta w= \pm \frac{\sqrt{2}}{2}, \pm\left(1+\frac{\sqrt{2}}{2}\right)$.
- $\Delta k=\pi$. This has $\Delta w= \pm 2,0$, and one value each $\left(k=\frac{\pi}{4}, \frac{5 \pi}{4}\right)$ with $\Delta w= \pm \sqrt{2}$.

The reader can compare these values to Figure 1 .

Figure 7: Plot of $y=\sin (x)$, sampled evenly in x. Most points have $|y| \approx 1$.

6 Asymptotic behavior of $S(\Delta k, \Delta w)$ as $L \rightarrow \infty$

6.1 Using $\Delta w(\Delta k)$ as a density of states

In equation 6, each transition of a particular Δk gives a Δw depending on the starting position m. In the thermodynamic limit, $L \rightarrow \infty$, which increases the number of distinct starting positions m. To get a sense of the value at $S\left(\Delta k, \Delta w_{0}\right)$, it's crucial to know how many starting positions m give Δw in a nearby range.

Consider an example $y=\sin (x)$ for some $x \in \mathbb{R}$. Intuitively, sampling y at $m x$ at each $m \in \mathbb{Z}$ will produce more points in the "peaks" and "valleys" of $\sin (x)$, since the slope of y is so large near $y=0$ (in fact, its magnitude is close to $\cos (0)=1$). Figure 7 illustrates this.

More formally, the value of $S\left(\Delta k, \Delta w_{0}\right)$ depends on the proportion of m that produce $\Delta w \in\left[\Delta w_{0}, \Delta w_{0}+\epsilon\right)$. In the simple example, $x=\arcsin y$ describes the inputs required to produce some y-value. To find how many x-values are captured by a change in y-value, we use the derivative:

$$
\begin{equation*}
\rho(y)=\frac{d x}{d y}=\frac{d}{d y} \arcsin y=\frac{1}{\sqrt{1-y^{2}}} \tag{21}
\end{equation*}
$$

Figure 8 compares a histogram of samples of $\sin (x)$ with equation 21 .

6.2 $S(\Delta k, \Delta w)$ as $L \rightarrow \infty$

For each Δk, the value of $S(\Delta k, \Delta w)$ is proportional to $\frac{d m}{d(\Delta w(\Delta k))}$. (Remember that equation 6 takes a value at every $m \in \mathbb{Z}$.) This can be directly computed:

$$
\begin{equation*}
\frac{d m}{d \Delta w(\Delta k)} \propto \frac{d}{d \Delta w}\left(\frac{\Delta k}{2}+\arcsin \frac{\Delta w}{2 \sin (\Delta k / 2)}\right)=\frac{1}{\sqrt{4 \sin ^{2}(\Delta k / 2)-(\Delta w)^{2}}} \tag{22}
\end{equation*}
$$

At small Δk, this equation simplifies to $\left((\Delta k)^{2}-(\Delta w)^{2}\right)^{-1 / 2}$. The reader can look to plots in Figures 5.6 which exhibit this behavior.

7 Acknowledgements

Thanks to Nick Sherman for posing the problem to me and answering my many questions.

Figure 8: Distribution of y-values of $y=\sin (x)$, sampled evenly in x. As the number of samples goes to ∞, the distribution $\rho(y)$ approaches $\frac{d}{d y} \arcsin y$. At each $\Delta k, \Delta w(\Delta k)$ and $S(\Delta k, \Delta w)$ are similarly related. In the thermodynamic limit, $S(\Delta k, \Delta w)$ approaches a value proportional to $\frac{d}{d(\Delta w)} \arcsin \Delta w=\frac{1}{\sqrt{1-(\Delta w)^{2}}}$.

