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1 Setup

1.1 The lattice

Consider a discrete lattice with lattice spacing a = 1 and an even integer L > 0 lattice points.

In Fourier space, the only allowed k values are k = 22—‘{ for d € Z. Note that because L is even, k£ = 0
and k = 7 will both be included. We can also consider k1, ko equivalent if k; — ko = 2nd for some integer d.

The dispersion relation goes as w = cos(k).

1.2 Defining S(Ak, Aw)
I will calculate S(Ak, Aw) at infinite temperature (5 = 0). This is represented below:

S(Ak, Aw) =Y 6(Aw — (B, — By))| (u| Ski [0) |1 (1)
Here, |u), |v) represent states in the sum of Hilbert spaces from 0 to L particles. At infinite temperature,
all 27 states are equally likely.

The || (u| S%,, [v) ||* term describes a transition from state |u) to state |v), with change in total momen-
tum Ak. This term should conserve total particle number.

1.3 Allowed values of Ak and Aw

We define S7 below:
Skr =D akariak (2)
k
This operator can be described by annihilating a particle at momentum k + Ak and creating a particle
at momentum k. State transitions can only change particle momentum by Ak.
So we only need to consider transitions of a single particle moving in (k,w)-space, from (m,cos(2%X))
to (n,cos(#4=)). This restricts Ak:
2rd
Ak=—,deZ (3)
L
There are some interesting symmetries. Since kp is equivalent to ko = k; + 2md for integer d, Ak and Ak’
can be thought of as equivalent when k — k/ = 27d for integer d. This corresponds to one-particle transitions
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from the same initial k1 to ko in different Brillouin zones.

Additionally, there is a reflection symmetry around the w-axis. We could consider transitions to the ”right”
or to the ”left” without loss of generality. So, Ak and —Ak can be thought of as equivalent.

Thus, we only need to compute Ak from 0 to 7.

The 6(Aw — (E,, — E,,)) term restricts S(Ak, Aw) nonzero only at Aw corresponding to transitions:

2mm

Aw = cos(

) 7005(27#),71,77162 (4)

2 Doing the counting

2.1 Each one-particle transition can be done 2772 equally likely ways
Suppose you transition a particle from k; to k. Before you make the transition, you need the input k; filled

and the output ks empty. You have 2272 total choices when specifying the other k-values.

Each transition uniquely specifies a state; it takes the starting state, empties the input k; and fills the
output ko. So, there are 2872 .1 = 2272 ways to jump from k; to ks.

Each jump is equally likely because all states are equally likely at infinite temperature.

2.2 Choosing Ak # 0, Aw specifies 0, 1, or 2 distinct one-particle transitions

If Ak or Aw are not allowed, there are 0 one-particle transitions.

Suppose the Ak and Aw are allowed by a transition from (k1,w;) to (k2,ws) where k3 # ks. By sym-
metry of cos(k), there exist points (7w — k1, —w1) and (7 — ko, —ws). A transition from m — ko to ™ — k1 would

have the same Ak =7 —ky — (7 — ka) = ko — k1 and Aw = —w; — (—ws) = wy — wy. This second transition
is distinct except when both Aw =0 and k1 + k2 = 7 mod 27.

In other words, any (Ak, Aw) has 2 distinct one-particle transitions, except for nonzero Aw where the
transition is symmetric about the k-axis. (Note: As we will see, for every Ak, the number of exception Aw
goes as 1/L.)

I have not formally proved uniqueness, i.e. there are at most 2 distinct one-particle transitions. Perhaps it
can be done by thinking about the average of sin(z) over a sliding window somewhere in the domain 0 to 7.
2.3 Computing allowed values of Aw(Ak)

We can simplify equation [4] using the trigonometric sum-difference formulas:

2m7r) - cos(QnTﬂ) = 23271(2%@)8271(2%@), n,m ez (5)

Aw = cos(

Since the associated Ak = ME"), we can find the allowed Aw(Ak):

Aw(Ak) = 25in(27TTm — %)sm(%) = sin(Qﬁm)sm(Ak) — cos(27rm

)(1 —cos(Ak)),meZ  (6)



In general, since e*“* = cos(cx) + isin(cx), Acos(cx) + Bsin(cx) represents a sinusoid:

Acos(cz) + Bsin(cx) = Re((A — iB)e'®) = \/mCOS(Cx — arctan g) (7)

We can verify that the allowed Aw(Ak) are points from a sinusoid with a phase shift:

_ 2m sin(Ak)
_ RV 2 _ .
Aw(Ak) = \/(cos(Ak) — 1)2 + sin2(Ak)cos( arctan cos(AR) — 1),m €Z (8)
Aw(Ak) = /2 — 2cos(Ak)cos(27;m T +2Ak) = QSin(—Qk)sin(—sz - —Aj),m ez (9)

2.4 Degeneracy of Aw(Ak)

This function takes up to L distinct values: Each starting point (position m) on the lattice could produce a
different Aw.

When Ak =0, only Aw = 0 is allowed, so it has degeneracy L.

For nonzero Ak, there are at most two starting positions m # 0 that change from k,, to —k,,. Those
two points will have degeneracy 1, and the rest will have degeneracy 2.

In particular, there exists a starting position m with w,, = 0 if and only if L is divisible by 4. In these cases,
only Ak corresponding to an odd number of steps s = 2d + 1,d € Z will have two points with degeneracy 1

(d steps above and below the zero position).

The opposite is true for L even but not divisible by 4: Only Ak corresponding to an even (nonzero) number
of steps s = 2d,d € Z will have two points with degeneracy 1 (d steps above and below w = 0).

All together:

count(Aw =0,Ak =0,L) =L (10)
And considering d, e € Z:
2nd 2(2d+1
count(Aw = :I:25in(%), Ak = %, L=4e)=1 (11)
2nd — 4dm

count(Aw = £2sin( ), Ak = A #0,L=4e+2)=1 (12)

And in all other allowed cases, count(Aw, Ak, L) = 2.

2.5 Calculating S(Ak, Aw)

Using the previous section:

L—-2

2 1
S(Ak, Aw) = 6e¢u,1§Aw,Aw(Ak)count(Aw,Ak:,L)Z—L = Zéeiu,16Aw,Aw(Ak)count(Aw, Ak,L) (13)

In this form, it is hard to visualize, but let me sketch a few details.
e Ak is fixed on a grid. and S is symmetric about Ak and periodic with Ak = 27.
e Aw is only allowed at certain values for each Ak, described by equation [6]

e The value of S at each allowed (k,w) is uniform except for a few cases, dependent on L and Ak.



3 Features of Aw(Ak)

3.1 Computing the minimum allowed |Aw(Ak)]

If Ak corresponds to an even number of steps in k, the jump can be symmetric around k& = 0 (so Aw = 0).
If Ak corresponds to an odd number of steps s = 2d 4+ 1 in k, the jump must be nonzero. It is best to
have the endpoints nearest to k = 0 (where the slope of w(k) is the smallest). For 0 < s < L/2 (the relevant
range) this implies centering around k& = 0. So, the minimum jump will be cos(2dr/L) — cos(2(d + 1)n/L).

All together:

4
min|Aw(Ak)| = 0, Ak = %,d €z (14)
2 2 1 2(2 1
min|Aw(Ak)| = cos(%) - cos(@),Ak = w,d ez (15)

f 2% and 24~

The above formula could be rewritten in trigonometric functions o 7, if the reader is interested.

3.2 Computing the maximum allowed Aw(Ak)
When Ak =0, Aw = 0. The rest of the subsection explores Ak # 0.

Suppose L is divisible by 4. Then there will be a point at w = 0. The maximum Aw corresponds to

the largest jump around w = 0 (where the slope of w(k) is largest in magnitude). So, for an odd number of

lattice steps s = 2d + 1,d € Z, the maximum is sin(224) — sin(—224) = 2sin(224)). For an even number of

27r((£ 1)) —sin( 22(1) —Sln(2ﬂd)+ (ML—U)

lattice steps s = 2d,d € Z it’s nearly that: sin(
When L is even but not divisible by 4, there is no point at w = 0. The best case is when Ak corresponds to an

even number of lattice steps s = 2d, d € Z; then, the maximum is sin(27%=") — sin(=22ET) = 2gin(279=" ).

When Ak is an odd number of lattice steps s = 2d+ 1, d € Z, the maximum is sin(2%") — sin(—224") =
sin(F9=T) 4 sin(2THT) = 2sin( 25 )cos(T).
All together, assuming d, e € Z:
marAw(Ak) = 2sin(?), Ak = w, L=4e (16)
maxAw(Ak) = sm(%d) + sin(W), Ak = @ #£0,L =4e (17)
mazAw(Ak) = 25in(2zd)cos( ), Ak = %, L=4e+2 (18)
mazAw(Ak) = 28in(27rd — 7T), Ak = @ #0,L=4e+2 (19)

3.3 Computing the average allowed |Aw(Ak)| as L — oo
In the thermodynamic limit, the average allowed |Aw(Ak)| can be found by averaging its expression:

Ak, 2 Ak 4 Ak
|Aw(Ak)| = |2sm(7)sm(ﬂ -5l = Zsin(5
™

S ) (20)



Awlnk) at L=8
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Figure 1: Aw(Ak) at L = 8. The plot is symmetric about Ak = 7 and Aw = 0.

4 Plots

4.1 Plotting Aw(Ak) at various L

We know a few details about this function so far:

e The minimum of |Aw| stays around zero.

Ak)

¢ The maximum of Aw goes roughly as 2sin(57).

e The average |Aw| goes roughly as %sm(%)

Figures visualize Aw(Ak) at various L. The generating code is in a Jupyter notebook and PDF
attached to this project.

Ignoring nearly uniform degeneracies, Aw(Ak) can be used to describe the density of states of S(Ak, Aw),
especially as L — oco. I use alpha compositing on these plots to better show this density of states.

4.2 Plotting S(Ak, Aw) at various L and Ak

At finite L, this function is a summation of Kronecker delta functions at allowed (Ak, Aw) values. So, for
these plots, I convert allowed values of (Ak, Aw) to Gaussians with oa,, = 0.1.

Figures visualize S at various Ak. The density of states is similar to the output y = sin(z) sampled

at fixed x, so S is similar to the curve -+ arcsinz = 11_3:2.

Figures [6a], [6D] [6c| visualize S at various L. The oscillations disappear at larger L, but that threshold
increases with increasing Ak.



Aw(ak) at L=20
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Figure 2: Aw(Ak) at L = 20. Notice how the maximum goes approximately with 2sin(%).

Awlak) at L=60
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Figure 3: Aw(Ak) at L = 60. The darker areas correspond to a higher density of states (thus a higher
S(Ak, Aw)). Although Aw can vary across the plot, many states are concentrated around the maximum

|Aw(AE))|.



Aw(ak) at L=60
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Figure 4: Quarter-plot of Aw(Ak) at L = 60. This function is symmetric about both the Ak-axis and
Aw-axis. Notice that every other allowed Ak includes Aw = 0.
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(a) S(Ak, Aw) at L = 20. (b) S(Ak, Aw) at L = 40.

Figure 5: Plot of S(Ak, Aw) at various Ak. At higher Ak, the function requires higher L to smooth out.
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Figure 6: Plot of S(Ak, Aw) at various L. The function stabilizes as L > 50.



5 Examples

5.1 Worked example: L=2

If there are only 2 elements in the lattice, then only (k = 0,w = 1) and (k = m,w = —1) are allowed. So,
there are 4 distinct one-particle transitions:

1. k=0—-k=0(Ak=0,Aw =0)
2. k=0—-k=7 (Ak=mAw=-2)
ok=m—-k=0(Ak=mAw=2)
4 k=n—k=n (Ak=0,Aw=0)
This matches each analytical result:
e There are 0-2 one-particle transitions per (Ak, Aw)
e Aw(0)=0
o Aw(m) = sin(22) = +1

e The reader can verify that minimum and maximum allowed |Aw| match at both Ak =0 and Ak = 7.

5.2 Worked example: L=4
With four points on the lattice, there are four points in k-space: (k,w) € {(0,1),(%,0), (m,—1), (3F,0)}.
Consider the distinct transitions with positive Ak:

e Ak =0. Here, Aw = 0 for all 4 possibilities.

e Ak =Z. Here, in two cases (k =, 3F), Aw =1, and in the other two, Aw = —1.

e Ak = 7. Here, in two cases (k = 7, 37”), Aw = 0, and the other two cases produce Aw = +2.

o Ak = 37” = — + 27. This has the same behavior as Ak = .

This again matches each analytical result, including:
e There are 0-2 one-particle transitions per (Ak, Aw)

o Aw(%) = cos(352) + sin(252) = +1

e The reader can verify the degeneracies are in the expected places.

5.3 Worked example: L=8

With eight points on the lattice, there are the same four points in k-space as in L = 4, and four new points:
{(Z ‘/5), (3 ‘/5), (5r \/5), (Tm \/5)} Considering transitions where 0 < Ak < 7

472 Hh\Tay T T2 402

1072
e Ak = 0. This forces Aw = 0 for all L starting positions.
e Ak = 7. This has Aw = :I:g,:l:(l - g)

e Ak = 7. This has Aw = #1,0, and one value each (k = 7, 5T) with Aw = 4+/2.

4

NI

o Ak = 3. This has Aw = i%,i(l + ?)
o Ak =m. This has Aw = 2,0, and one value each (k = F, 2F) with Aw = +v/2.

The reader can compare these values to Figure [I]
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Figure 7: Plot of y = sin(x), sampled evenly in x. Most points have |y| ~ 1.

6 Asymptotic behavior of S(Ak, Aw) as L — o

6.1 Using Aw(Ak) as a density of states

In equation [0} each transition of a particular Ak gives a Aw depending on the starting position m. In the
thermodynamic limit, L — oo, which increases the number of distinct starting positions m. To get a sense
of the value at S(Ak, Awy), it’s crucial to know how many starting positions m give Aw in a nearby range.

Consider an example y = sin(x) for some z € R. Intuitively, sampling y at mz at each m € Z will
produce more points in the "peaks” and ”valleys” of sin(z), since the slope of y is so large near y = 0 (in
fact, its magnitude is close to cos(0) = 1). Figure [7|illustrates this.

More formally, the value of S(Ak, Awg) depends on the proportion of m that produce Aw € [Awg, Awg +€).
In the simple example, = arcsiny describes the inputs required to produce some y-value. To find how
many z-values are captured by a change in y-value, we use the derivative:

( )—d—x—iarcsin -1
)= = V=

Figure 8] compares a histogram of samples of sin(x) with equation

(21)

6.2 S(Ak,Aw) as L — c©

For each Ak, the value of S(Ak, Aw) is proportional to m. (Remember that equation@takes a value
at every m € Z.) This can be directly computed:

dm d

aAw(nk) > ddw (22)

(% + arcsin L) = :
2 2sin (Ak/2) \/4 sin® (Ak/2) — (Aw)?

At small Ak, this equation simplifies to ((Ak)2 - (Aw)2)71/2. The reader can look to plots in Figures |§|
which exhibit this behavior.
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Figure 8: Distribution of y-values of y = sin(z), sampled evenly in . As the number of samples goes to co,
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